Dual, 4A/2A, 4MHz, Step-Down DC-DC
Regulator with Dual LDO Controllers
LDO Controllers
Design Procedure
PNP Pass Transistors Selection
The pass transistors must meet specifications for current
gain (?), input capacitance, collector-emitter saturation
voltage, and power dissipation. The transistor’s current
gain limits the guaranteed maximum output current to:
Stability Requirements
The MAX15022’s B3 and B4 outputs are designed to
drive bipolar PNP transistors. These PNP transistors
form linear regulators with positive outputs. An internal
transconductance amplifier drives the external pass
transistors. The transconductance amplifier, pass tran-
sistor’s specifications, the base-emitter resistor, and the
output capacitor determine the loop stability.
I OUT3/4 [A] = ? I B3/4(MIN) [A] ?
?
?
V BE [V] ?
R PULL [ ? ] ? ?
× β
The total DC loop gain (A V ) is the product of the gains of
the internal transconductance amplifier, the gain from
base to collector of the pass transistor, and the attenua-
tion of the feedback divider. The transconductance ampli-
g C_ × ? IN P1/2 ?
R IN [ k ? ] = β x ? ?
A P m ? PNP × ? OUT3/4 1FB3/4 2FB3/4 ?
×
where I B3/4(MIN) is the minimum base-drive current and
R PULL is the pullup resistor connected between the
transistor’s base and emitter.
In addition, to avoid premature dropout, V CE-SAT must
be less than or equal to (V PVIN_(MIN) - V OUT3/4 ).
Furthermore, the transistor’s current gain increases the
linear regulator ’s DC loop gain (see the Stability
Requirements section), so excessive gain destabilizes
the output. Therefore, transistors with high current gain
at the maximum output current, such as Darlington
transistors, are not recommended. The transistor ’s
input capacitance and input resistance also create a
second pole, which could be low enough to destabilize
the LDO when the output is heavily loaded.
The transistor’s saturation voltage at the maximum out-
put current determines the minimum input-to-output volt-
age differential that the linear regulator supports.
Alternately, the package’s power dissipation could limit
the useable maximum input-to-output voltage differential.
The maximum power-dissipation capability of the tran-
sistor’s package and mounting must support the actual
power dissipation in the device without exceeding the
fier regulates the output voltage by controlling the pass
transistor’s base current. Its DC gain is approximately:
? R × R ?
? R IN + R P1/2 ?
where g C_ is the transconductance of the internal
amplifier and is typically 1.2mA/mV, R P1/2 is the resistor
across the base and the emitter of the pass transistor in
k ? , and R IN is the input resistance of the pass transis-
tor, and can be calculated by:
? 26[mV] ?
? I OUT3/4 [ μ A ] ?
The DC gain for the pass transistor (A P ), including the
feedback divider, is approximately:
? R × (R + R     ) ?
= g
? R OUT3/4 + R 1FB3/4 + R 2FB3/4 ?
R 2FB3/4
R 1FB3/4 + R 2F B 3/4
I [ mA ]
26 [ mV ]
maximum  junction  temperature.  The  power  dissipated
equals the maximum load current multiplied by the
maximum input-to-output voltage differential.
where g m ? PNP = OUT3/4
.
A V C_ × ? IN P1/2 ? × A P
+ R
R 1FB3/4 [ k ? ] = R 2FB3/4 [ k ? ] ? OUT3/4
? 1 ?
f POLE1 [kHz] =
=
Output 3 and Output 4 Voltage Selection
The MAX15022 positive linear-regulator output voltage
is set with a resistive divider from the desired output
(V OUT3/4 ) to FB3/4 to SGND (see Figures 7 and 8).
First, select the R 2FB3/4 resistance value (below 30k ? ).
Then, solve for R 1FB3/4 :
? V     [V] ?
? V FB3/4 [V] ?
where V OUT3/4 can support output voltages as low as
0.6V and V FB3/4 is 0.6V (typ).
The total DC loop gain for output 3 and output 4 is:
? R × R ?
= g
? R IN P1/2 ?
The output capacitance (C OUT_ ) and the load resis-
tance (R OUT_ ) create a dominant pole (f POLE1 ) at:
1
2 π × C OUT3/4 [ μ F ] × R OUT3/4 [ k ? ]
I OUT3/4(MAX) [mA]
2 π × C OUT3/4 [ μ F ] × V OUT3/4 [V]
22
______________________________________________________________________________________
相关PDF资料
MAX15025EATB+T IC GATE DRVR 2CH 16NS 10TDFN-EP
MAX15053EVKIT+ BOARD EVAL FOR MAX15053
MAX15054AUT+T IC MOSFET DVR HIGH SIDE SOT-23-6
MAX15070BEUT+T IC MOSFET DRIVER HNM LL SOT23-6
MAX15103EVKIT# EVAL KIT MAX15103
MAX1554ETA+T IC LED DVR WHITE BCKLGT 8TDFN
MAX1570ETE+ IC LED DRVR WHITE BCKLGT 16-TQFN
MAX1573ETE+ IC LED DRVR WHITE BCKLGT 16-TQFN
相关代理商/技术参数
MAX15023ETG/V+ 功能描述:DC/DC 开关控制器 4.5-28V Input Dual Out Synch Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX15023ETG/V+T 功能描述:DC/DC 开关控制器 4.5-28V Input Dual Out Synch Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX15023ETG+ 功能描述:DC/DC 开关控制器 4.5-28V Input Dual Out Synch Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX15023ETG+ 制造商:Maxim Integrated Products 功能描述:BUCK CONTROLL SYNC 4.5~28V 24QFN 制造商:Maxim Integrated Products 功能描述:BUCK CONTROLL, SYNC, 4.5~28V, 24QFN
MAX15023ETG+T 功能描述:DC/DC 开关控制器 4.5-28V Input Dual Out Synch Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX15023EVKIT+ 功能描述:电源管理IC开发工具 MAX15023 Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX15024AATB/V+ 制造商:Maxim Integrated Products 功能描述:- Rail/Tube
MAX15024AATB/V+T 功能描述:功率驱动器IC Single Low Side RoHS:否 制造商:Micrel 产品:MOSFET Gate Drivers 类型:Low Cost High or Low Side MOSFET Driver 上升时间: 下降时间: 电源电压-最大:30 V 电源电压-最小:2.75 V 电源电流: 最大功率耗散: 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Tube